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Introduction

The process of eXplorlng for 011 and gas is rlch in uncertalntles.
Any attempt to forecast returns to 1nvestment in exploratlon must take
»them into account in a systematic way, By thls we mean that 1nferences
' about the 1mportant uncertain quantities character121ng the exploration
process should be based on & mathematical model whose parameters may be

estlmated from observable data in a’ coherent way., At the root of any

'userI_model of the exploration process, then, is a set of asSumotions
}

" that delineate in clear unamblguous terms the probablllty law governing

the manner in whlch observable data is generated
Our flrst'objectlve is to construct a model of'the ekplorstionpo
_ process that allows us to test empirically the hypothe51s that’ at an
.early stage in the exploratlon of a ba81n, the process behaves 1ike
sampllng Without replacement The model we posit is par51monlous -
based on a small number of assumptaons and indexed by only five parameters,
The set of assumptlons on which it is built reflectsat least two qualitative
assertions often made by oilmen. the "blg ones“ tend to be found first and
the size distribution of f1elds is hlghly skewed, We may use it to
compute answers to two questions of paramount importance in designing
exploratlon strategy. . ‘
(1) How does the probablllty that a wzldcat well will find a
reservoir ‘change (if at all') as the hlstory of a basin unfolds?
(2) What is the probability that a yet-to-be-drilled wildcat. well
. will find a reserv01r of & given size or greater at a glven

point in the development of a basin?



Our second objective is to posit a reasonable model of the §ggtigl_’
'dietribﬁtion,of petroleum reservoirs.that conforms to a number of eﬁp;rically'
observe& facts about such distributions, bﬁt doee not possess three
" unrealistic attributes that charecterize models of'spetiel occurrence‘
appearing in thetliterature: dependence of the model on arbitrary
Subdivieion of e'basin into units of subspace,.the assumption of spetiai
homogeneity of the.stochastic process operating‘ﬁithin each.such unit as
well as across units, and conceptualization of a réservoir as a point.

" (in the plane) rather than as en object with“positive area, (See Uhlert
and Bradley [1970], Allais [1957], Engel [1957].) _

The first model we pose dlffers 51gn1f1cantly from ‘those postulated ..
by Arps and Roberts [1956], and by Kaufman [1963], It accounts for the
impact of exploratlon technology on the probablllty of dlscoverlng a new .
reservoir in an explicit and intuitively meaningful gay. And it is
structured_sovthet inferences about parameters not'known'With certainty
may be made in accordance ﬁith eell understood‘statistical principles,. In.
particular, the assumption that’the probability of diScoyering a reservoir
- is proportional to its size strongly biases any "ﬁsual" estimator when.

‘the sampleé : size is small, so we develop methods for ‘coping with this
complicatlnb feature of the data-generating process _ ‘

Our spat1a1 model has not yet been subaected to emplrlcal :f
valldation. However, 1ts structure is sufflclently flex1ble to warrent
the congecture that it will in fact prove to be a reasonable characterlzatlon
of a prccess that can by v1sual inspection be seen to be spatlally inhomo=

geneous, i,e., fields tend to cluster rather than to be Spread evenly
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throughout a basin, Under the direction of one of the authors, Golovin .
(1970] has programmed versions of this model and done computational
éxploration of some of its features. We shall draw'heaViiy on his work

in our discussion,



I, A Mo'dg]____of the Discovery Process

Nomenclature

The technology avallable for identifying potentlal oil-and/or-
gas-bearing structures is not perfect We shall assume that if this
technology is applied to_the'entire_areal extent of a generic Basin it
will delineate ¥ distinguishable prospects, We label them.l;Z,..;,M and'
call ™ = {1,2,...,M3. the label sat for the.popnlation.of prospects in
this basin., Each prospect either is or isn't a iield- by "field" we mean
a hydrocarbon-bearing reserv01r or a collection of contiguous reservoirs,
(Precision in defining what we-mean'by a "field" is not important at

this“juncture.) If it is a field, the field has many,chsracteristics of

interest; momentarily, we focus on only one -- its areal extent.,
Let

1 if the ith prospect is a field

O otherwise -

: -

and define

Ai -areal extent of ith prospect‘

Then (x.,A.) for iezn is a characteristic:of the ith population

element, We do not know e {(x 1) \ i&‘_"hz} witnc'ertainty prior to -
beginning exploration of the basin. .One of onr objeotives'is to make
inferences aboutveh as prospects are delineated and fields discovered
In particular we wish to know which element? of eM have x= 1, since the
ith prospect is by definition a field if and only if x, = 1.

At the outset of exploration, the eXploration process will

generate only a small subset of potential prospects in the basin, say

i
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n< M of them with population labels il""’in' And only a subset of

"k < n of these prospects will have been drilled, Hence a samole of

" size n is an ordered sequence of n of the population elements,

1,...,in) with ixt'hl- for{=1,2,...,n, together with an ordered

n-tuple of observed characteristics; e.g.,

,' [(j'l!- L] ,in); (xi].,Ail) '] Aiz, Ai3, (xiu,Aiu’) LI A ] (xin’Ain) ] .

There will be no loss in generality in the context of the model we deal

_with here if we relabel those prospects that have been drilled in the.

order in which they were drilled and fe-order as follows:

[(iyseee 103 B, Ay, Gl A0, CRENRER

In facﬁ'our modél will allow us to ignbre the ordering pf areas Ai. of
prospects that have been generated at a given point in time bu£ no%
drilled, so we define a sample as: | |

| T

H o = [.(il,...,in); (_3(1). A(l)),..., (0, ATy, fﬂig ]

n,k

where 1t is understood that the element LA;} 'is the set of areas of
undrilled prosoects generated by the exnloratlon process at the instant

when the (Lr+1)St well is to be drilled; r is }:.x(t) the number of
1=l

. fields found by the first k wells, We shall use H- . as shorthand

n,k

for a complete description of a sample when no ambiguity will arise,
In order to describe the assumptions on which our model is

based, we need the following array of notational ammunitionzl

1, A summary of symbols is given at the erd of the paper in Table 1,



Iy ={1]{48M and x; =13, the label set of fields in the
baszn,
Sy ='Z: 5 the total ared of N fields in the basin,
o iEI : :
' RM Z i ‘the btal area of M brosvects in the basin,

?t‘ x( )= 1 for t=1,2,...,k} ) 1';'he labei set of success‘fui
wells among the first k wells drilled, o

= {t. ‘x(t)- 0 for t=1. 3250409kY , the label set. of un=
successful wells among the first k wells drilled, |

Sy = Z A( t) s the total area of fields d:.scovered by the
teJ :
k

- f:.rst. k wells, and

= ) \ t‘), the total area of prospects dr:.lled by the flrst
t=1 '

: k wells, -

The. Data-G eneratig Model
We shall assume that the process generat:mg observable data
has the followlng propert:.es-

1, Constant Technoloe;y

Given S and RM and conda.t:.onal on observing a sample

k yielding stat:.stics sk and uk

SN - sk' .

)y =z .o
k RM - o . /

P (x( k+l)_ l‘

' ‘This assumption :-_says that the probability that the (k+1)St‘ well will ]

' discover a field changes in a "hyperg'_eometrié-lik_e" fashion with ¢hanges
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'.in 5, and u, The ratio SN/RM aoes not depend on-either S OF W ard is
a rough measure of technolog1ca1 efficiency » hence the lakel "constant
technology" | | |

“ 2. Probaoilistic Probortionelitz

Given ¢4, is'h]_ and x,= 1} and conditionalon

& (ke l)

observing Hr and % =1, the probablllty that the (k+1) well

oK
dlscovers a field of areal extent A is

NI o SN~k
p (AU, ) 50Dy Hy 1) |

=

0 otherwise,

Assunptions 1 end 2 formalize the idea that the probability
of discoverlnﬂ 2 field of areélextent A is proportlonal to 4, for glven

RM and S ,

Pdafﬁk if aeqa | %=1 and 1§43

P(i( k+1)_ , (k+1) 1 ‘ |
-»_ -0 otherwise.

n,k

VBoth assumptions. 1gnore the information content of the statlstic {A..}

the set of areas A of prospects generated prlor to drlllln° the .
(k+1)st well but as yet undrilled, and exploit only the 1n£ormatlon generated
by the outcome of drllllng the flrst k wells. In order to GXpllt all
informatlon 1n_H ,k" we would have to build a model of the process

generating prospects as well as of one generatlng dlscoveries. We have

chosen to suppress this complicating feature in our-preliminary investigation,

3, Probablllty,Law of {A

Flieng

EA 18132 isa set of mutually independent identlca]_ly
distributed random varlebles,_each characterlzed.by a density (- 2)

A is Aé{Ai! %=1 and 1£0,7



Lgkelihood Function

The iikelihood function generated by obser.vation. of a sampie

.H;,k is, defining u,= O'end 5= Cs

L , Ry» & . Sy l Ky

7 Su e k(Y Sy = Spg 1)
1 - [l
S el vl
T
T Y e

x N-r " is the (N-r)-fold convolutlon of £ with 1tself The

% N-r

) where T
appearance of the term f (S -s ) may be explained like this:
the process of generatlng observatlons does so in two stages First, L
nature generates N values {A l i& IN} Then the observables are

' generated in a way that depends probabil:.stlcally on °N ): Ai .
' . _ i £. I

: Consequent.ly, SN is a parameter of the .observatlonal process (1 and 2)
and at the same time a statistic from the vantage point. of the process
generating fn.eld areas (3) If we msh to make inferences about
N, RM e, and SN 301nt1y, then SN appears in both roles.

' The likelihood funct.lon (1. 1) may be rewrltten as proportional

- tos '



f(A(At’lg)_ e

x ?N;r (.SN -5 \g)

Approximation of Likelihood. Function

In general, working directly with L(N, Ry € & SN' KT k) is
difficult, However, when N-r is very large We can apply, the: (equal
. components) Central le.lt Theorem- i,e,y if f has mean mg (-, +m)

% Ner

and bounded . varlance U, then as Nep 1ncreases, f becomes more and

more- accurately approxlmated at each value of its domain by a Normal
density fN( * | m{N-r], Y[N-r]) with mean m[N-r] and variance U [N—r].
Here we are interested in the behavior of L when f is a Lognormal

- density with parameter € = (u.,oz):

' . 2, 2
1 e- %(1089 x-p)/o

. 3'? if x5 0,
. . 2no ' S (1.3)
- M(x l 8) .= fL(XI uv,d?) = ‘ o : R 3
o . 1 0 T - . . otherwise,

Cembining the Normal approximation suggested above with f as in (1.3),

that portion of (1.1) involving p and az-may be written as proportional to

2, Providee”"_.f]f(ﬂg)l2d§<oo .
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L L1, \2,2 1.2
o = Tom gKe-w) /0" = 5 /o

(1.4)

1
*(UlHer])2 ‘“S - skJ - nlN-r])? /um.r)

where .
|

=exp{u'+%-'02}s~ - U

m?[exp {F-11 ,

1 | 2 2
g =z ZlogAi " Z(lOgAi) -Tg .

<
i

Maximum Likelihood Estimation

It will be convenient to ﬁerk with m in piace.offu iﬁ.the sequei
" and we shall do so, To find a maXimum likelihood estimator (MLE) of
Vperameters m,,cz,.N, RM; and'S& when the.likelihoo&vfudction is:of the. |
’form (1.1) is enalytieally difficult, We eméloy_the following procedure:3
1. Fix the value of Ry -
2. 'Flnd an MLE n* (o,N, 8, ) of n for fixed o, N, and S
3, Holding N and Sy f:.xed, substltute n* (g,N,S ) for m in (1. u),
" find MLE's of m and o2 by searchin° (1. u) over o2 g (0,c0).
: Call_thls pair [miﬁ(N’SN)’le(N’SN)]' |

3. In practice we have utilized the gradient method developed by
Goldfeld, et al,[19¢6] to simultaneously estimate u (or m) and o
conditional upo: upon the pair (u,bv) This creates the tableau described
in step 4, It may prove 90531ble to employ this method to simultaneously
estimate all parameter values, thus eliminating ~the search procedure of

- steps 4.7, Using data on exploratory drillinz in Alberta, we have esti-
mated parameters for several regions, The data support the hypothesis
that the sizes of discoveries tend to decrease over time, but although

‘the estimates appear reasonable we regard them as too tentatlve to be
published at thls time, -
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Repeat step 3 for a larée set of v#lueé of the ordered»paif

(N SN)’ ‘and tabulate the value of log llkellhood ‘for each

(N 5 ) at [m,c ]l= [m*_(N S ),;_ (N oN)] _ ; '
Search»tabulated values.of the log likelihood for,an apﬁroximdte
maximizer (N%,5h,m, (8,55 ,02(8%,55)) of (1.1), given R,
Repeat.steps 2 through 5 for a set of values of RM'

Search log likelihood values for an approx1mate (JOlnt) MLE

¢

‘of dll parameters,
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II, A Spatial Model

By a §patial model of the deposition of petroleum.deposits, we
mean a stochestic process generating ualues of a sequence of rendom
- variables in a way that Jointly s1mulates the frequency distribution
of areal extent, the geographic location and the shape of these dep051ts
The first approaches that pop into one's mind are 1ncorrect i e., Vviewing
the process generating the number of fields per unit area A as a spatially-A
homogeneous Poisson orocess is incorrects randomizing the parameter A(A)
‘of such a process by assuming that A(A) is a random variable with Gamma
adensity(see Uhler:and Bradley tl970]) leads to'a better approximetion,
“but still is deficient in the tails'--;that is, a negative binomial
distribution doesn't fit ﬁellyin the right tail, In addition, a compound
Poisson process, or a (randomized) modification of it doesn't really
.explain the “clustering close together" that one observes when examining
a nep.pinpointiné oil and gas fiids,'already discovered in a well-explored
basin, . | | | | |
| The model we propose here is conceptually simple, extremely
flexible and can be easily modified in many ways, We replace the two
‘dimensional continuum with the lattlce L= {(1,j)li,3 1nteger} of.
ordered pairs of 1ntegers and equip it w1th the Simplest of probabilistic
:laws of motion; a symnetric random walk, We then define an 1mbedded ’
vprocess that lays down a 1 or a 0 at first {or subsequent) passage of
the random walk through a lattice point, The assumptions we detail
_shortly lead to pictures such as that shown in Figure 1 (Golovin [1970],
p. 17). C ﬁ
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Dlstlngulshlng features of the model used to generate Figure 1
are that reserv01rs have pOSlthe area, there is a cluster effect andv
the frequency hlstovram of area extents is, a51de from a truncatlon

"effect 1nduoed by clusterlnb, asymptotlcally Lognormal
_ !
Basic Definitions and Pronerties

The model is composed of three basic objects: a symmetric
random walk on L, a random process superposed on the path taken by the

. rahdom walk, and a stopplng rule

Let. [1,3, t] denote the pos1tlon on L of the random walk at
trial t, t = 0,1 2,... and deflne ‘ '

1 if (i,3j) has been a551gned a one at
some te < t’.,

8(1,3) A'—'. |
o 0 if (1,j) has been assigned a zero at
some t' < t. .

If the random walk has not passed through (1,j) at some - t' <-t, 8(i,3)
vis left undeflned We set ’

) = {(,3]6(5,5) =1 at triad &

and : -
| T I(t)

E9]6(1,3) = 0 at trial t]

and define the state St of the process at trial t as e;triplet eonsisting
of the loeation'[i,j; t]-of the random walk at the end of tiial t, the
set I(t), and the set J(t)s 4. e S¢ = ([1,5; t], I(t), J(t)). Let by

be the snallest non-nevatlve integer such that [i;j; t+ht] £ I(tYUI(t); t+h

t
1is the_flrst trial following_trial;t_at which first passage through an
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an unassigned poi'nt. occurs, Set t,Q. Z h ’ l, and define -
N . 1—1 -
cn t ’tl"" ’tk"-" a sequence { t’k’ k=1 2,...} of mutually indepencwnt

random variables with common probablllty functlon

(o
low if 3 =

P{Q;J}=.ﬁudhﬁhw”’ 1 5= 2%, = 0,0,2,...,m

o — otherwisey-

\ N

with ma positive'integer‘-and O'<p'<i> The value f - of ft. may be

e k

.’mterpret.ed as a "chaln" of ones that the process will attemot to lay
down on po:.nts in the complement of I(t) inL, Upon termlnatlon of the
ass:Lgnment of ones t.hat beg:.ns at (1,33 k]’ the random walk continues
.with no assignments made unt:,l at the (random) t.rial 2{*1- t + h‘k+1 s &
lattice point [1,3 1¢ I(t YUI(t,), A value  of §

Yo tk 0 The Yei1
.:!.s generated, and the assi'gmnent. of ones 'begins anew as described above,

Assignment of ones is governed by the following rules, where we

let N([i,3; tk])= {(i+x,. j+y)| x =41, y =+ l} , the set of nearest; neighbors ﬁo
[i’ja t’k] in L,
1. If no element of N([1,j; th) is in I( t ), set 8([1,3; £,1) =1,

2, Ir at least one element of- N([:L,j, tk]) is in I( t'k)’ set
‘5([1,3, t.k]) 0 and term:mate the ass1gnment of ones (from
the "chain" of §tk ones) T

3. It 6([1,:), k]) =1, let. the random walk continue repeatin=>
‘ step 1 until either; ’

. (a) §t’k ones have been assigned to [1,3j; _tk],;.».,[i,j; t.k+£ ],

Y

or
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(b) " a position [i,j3 'tk +ﬂ,],l< ftk s is reached for which
- at least one element of N([i,3; t, +JL])-is in I(tk); g
Then terminate the assignment of ones from the “chéin"iof é:tk'ones;
Clearly,.the random time ht = %k+1 - tk depends upon the

stato Stk of the process at trial tk.h And the number of ones assigned
. . A

to lattice points from the "chain® :é;k=<£;k of ones depends in a very
complicated way on S, 5 S,  4..449 s where § is the first integer
COMPLLCALoL HaY 00 S b Sty Pty gt T Lk the |

such that ([i,j; tka]) = 0, In probabilistie parlance, the rulesfor

generating a value of ht and for the assignment of ones to lattice

points are called stopoine rules,

4, There is no'semanticfcbnfﬁsion in using "time"'vhk+l to denote number
of trials between_tk+1- Y, and we shall do so.,

o~
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Table 1

Summary List'ofASymbols~

- I, Model of the Discovery Process

= :én'hﬂ

o o

o]
P

surface area of ith reservoir

number of w11acats drilled, i,e,, number of prospects observed
number of prospective dr1111ng sites |

number of reservoirs in the §a51n

nunmber of successful wildcats

ﬁotal area of M prospects in the basin

total (cumulative) area of reservoirs discovered by k wildcats
tofal'aréa of N reservoirs in the'basiﬁ

parameter ‘set for the den51ty functlon of A = (u,oz)

total (cumulative) area of prospects drilled by k w11dcats

outcome of 1th wildeat well (xi— 1, where well is a success,
0 otherwise) - S '

II, Spatial Model

6(1,j) state of point (i,J), Oor 1, where 1 51gnifles presence of |

(e
J(t)

L
N .

S

petroleun

:petroleum areas; set of l- points, I(t) = [(1,3)‘6(1,3) ]

no*setroleum areas (or un8551oned) set of 0- points,

= [(1,5)]8(1,3) = 0]

fspatlal locatlon- lattice of ordered. palrs L = [(1,3)[1,3 1nteger]

" set of nearest neighbor points to point (1,3, tk)

N(1,3; 4 )12 [(ix, hy)|x = £ 1, y = £ 1]

chain of ones laid down from point (1,j, tk) subject to -
prescribed stoppln° rules

state of the process at trial t: 5= [(i,35 t), I(t), J(t)]
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